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Abstract—In this paper, the problem of estimation is 

considered for a class of processes involving solidifying 

materials. These processes have natural nonlinear 

infinite-dimensional representations, and measurements are 

only available at particular points in the caster, each 

corresponding to a single discrete-in-time boundary 

measurement in the Stefan problem partial differential equation 

(PDE) mathematical model. The results for two previous 

estimators are summarized. The first estimator is based on the 

Stefan problem, using continuous instead of discrete-in-time 

boundary measurements. The second estimator employs a 

process model that is more detailed than the Stefan Problem, 

but with no output injection to reduce estimation error, other 

than model calibration. Both of these estimation frameworks 

are extended in the current paper to a more realistic sensing 

setting. First, an estimator is considered that uses the Stefan 

Problem under some simplifying but practically justified 

assumptions on the unknowns in the process. The maximum 

principle for parabolic PDEs is employed to prove that online 

calibration using a single discrete-in-time temperature 

measurement can provide removal of the estimation error 

arising due to mismatch of a single unknown parameter in the 

model. Although unproven, this result is then shown in 

simulation to apply to the more detailed process model. 

I. INTRODUCTION 

Processes involving solidification are wide-spread in 
manufacturing, but pose several significant challenges to 
traditional control theoretic methods, as they are 
fundamentally infinite-dimensional and nonlinear in nature.  
The simplest, but still accurate, model of such processes, 
commonly called the Stefan Problem, splits the spatial domain 
into separate sub-domains for the liquid and solid parts of the 
material. Within the sub-domains, temperature follows the 
usual parabolic heat-diffusion partial differential equation 
(PDE). The boundary between the domains moves according 
to conservation of energy, written as the Stefan condition in 
terms of the temperature gradients on both sides of the 
boundary. 

Moreover, specific solidification manufacturing methods 
pose problems that are generally not considered within the 
field of distributed parameter control systems. Consider the 
process of continuous casting, which as of 2013 was used to 
make more than 90% of the steel in the world [1].  An 
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illustration of this process is shown in Figure 1. Continuous 
casting, as opposed to traditional casting methods, keeps a 
constant flow of liquid metal into the machine. The metal in 
the caster, called the strand, cools and solidifies as it moves 
through the machine. Heat is removed by water cooling sprays 
and direct contact with support rolls. At the exit of the caster, 
the fully solid metal is cut into separate pieces either to be 
processed further or shipped directly to a customer. 

The basic estimation problem for this system, estimating 
the distributed temperature profile within the strand using only 
boundary measurements, is difficult enough given the 
nonlinear governing PDE. However, the actual measurements 
available are typically sparse. The support rolls and the 
machinery of the caster itself block access to the strand surface 
in much of the caster. The rest of the surface is usually being 
sprayed with water to cool the metal. The sprays themselves 
and the steam where they hit the strand interfere greatly with 
optical pyrometers. A typical caster will have likely one or two 
in the entire machine. 

In Section II, a basic mathematical model of solidification 
is described, based on a continuous steel slab caster. The 
specific difficulties of the estimation problem are described. In 
Section III, a brief description is given of some previous work 
on the subject. In Section IV, a new result is described, 
building on the previous work to move towards an 
implementable estimator that uses the measurements available 
with enough accuracy to be used as feedback for control. 
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Figure 1. Illustration of continuous steel slab caster. 
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II. MATHEMATICAL MODELS 

Before introducing the actual partial differential equations, 
a short discussion is needed on scaling analysis. The 
discussion to follow is based on [2], where more detailed 
information may be found. Inside the strand of a caster, heat is 
transferred by two methods: diffusion and advection. The 
latter is heat transported by the actual movement of metal 
through the caster. At typical casting speeds, advection heat 
transfer is much faster than diffusion heat transfer, to the point 
where the latter is negligible in the casting direction. Rather 
than model the entire three-dimensional (3D) domain, 
reasonable accuracy is achievable by modelling a 
two-dimensional (2D) slice of the material as it moves down 
through the caster. Furthermore, in slab casters, i.e. when the 
aspect ratio of the 2D slice is very large, heat transfer is 
dominant in the smaller transverse dimension. Therefore, a 
one-dimensional (1D) slice gives good accuracy, and will be 
used for this work. For simplicity, the work in this paper will 
also assume the temperature is symmetric across the center of 
the strand. This will simplify the notation, and the results can 
mostly be generalized straightforwardly.  

This 3D-to-1D dimension reduction is important to the 
present work because changing the frame of reference changes 
the nature of the measurement. In the full 3D reference frame, 
a pyrometer is a point measurement in space. In the 1D 
reference frame, a pyrometer is instead discrete in time, taken 
when the slice passes beneath the location where the 
pyrometer is installed. The common control theoretic concept 
of estimation assumes measurement over a non-zero length of 
time, and so many existing results cannot be directly applied to 
this problem. 

A. The Stefan Problem 

The Stefan Problem [3] models a solidifying material, in 
this case the moving 1D slice of the caster, by dividing it into 
two separate sub-domains, solid and liquid. Within each 
subdomain, temperature evolves according to the usual linear 
parabolic heat diffusion equation. The boundary between the 
two domains moves according to conservation of energy 
between the heat fluxes—proportional to the temperature 
gradients—on either side of the boundary and the latent heat 
of solidification. 

Denote x to be the spatial variable, t to be the time variable, 
T(x,t) to be the temperature and s(t) - the location of the 
liquid-solid interface. In the equations to follow, subscripts of 
x and t indicate partial derivatives. In general, arguments will 
not be included to simplify notation. Then, the Stefan Problem 
is written as 

 𝑇𝑡 = 𝑎𝑇𝑥𝑥 , 𝑥 ∈ (0, 𝑠) ∪ (𝑠, 𝐿), (1) 

 𝑇(𝑠, 𝑡) = 𝑇𝑓 , 𝑠𝑡 = −𝑏𝑇𝑥|𝑥=𝑠−
𝑥=𝑠+

, (2) 

where the material is solid for 𝑥 ∈ (0, 𝑠)  and liquid for 
𝑥 ∈ (𝑠, 𝐿), L is the half-thickness of the slab, Tf is the melting 
temperature, a is the thermal diffusivity, and b is a constant 
related to the thermal conductivity and latent heat of 
solidification. For the specific 1D slice problem, the initial 
conditions (ICs) and boundary conditions (BCs) are 

 𝑇(𝑥, 0) = 𝑇0, 𝑠(0) = 𝑠0, (3) 

 𝑇𝑥(𝐿, 𝑡) = 0, (4) 

 𝑇𝑥(0, 𝑡) = 𝑞(𝑡). (5) 

The boundary heat flux q will be discussed below. 

One assumption will be made to simplify the problem: 

(A1) 𝑇0(𝑥) ≤ 𝑇𝑓 , 𝑥 ∈ (0, 𝑠0) and 𝑇0(𝑥) = 𝑇𝑓 , 𝑥 ∈ (𝑠0, 𝐿). 

That is, the material is initially below the melting temperature 
in the solid and equal to the melting temperature in the liquid. 
The first condition is physically necessary. The second 
condition is simplistic, but not overly so. The temperature 
superheat (temperature above the melting temperature) in the 
liquid in a caster is around 25 to 50 °C, while the temperature 
at the strand surface is hundreds of degrees below the melting 
temperature. Therefore, neglecting the temperature gradients 
in the liquid is a common simplification in modelling 
continuous casters. Since this limits the temperature transients 
to the solid area, this simplification is sometimes called the 
“single-phase” Stefan Problem. 

One useful consequence of this assumption is that the 
Stefan condition (2) simplifies to 

 𝑠𝑡 = 𝑏𝑇𝑥(𝑠−, 𝑡) (6) 

The second useful consequence follows from the maximum 
principle for parabolic PDEs, the principle that a parabolic 
PDE solution attains its maximum value on the boundaries of 
its spatiotemporal domain. In this case, (2) and (A1) together 
imply that 

𝑇 < 𝑇𝑓 , 𝑥 ∈ (0, 𝑠), and 𝑇 = 𝑇𝑓 , 𝑥 ∈ (𝑠, 𝐿) ∀𝑡.             

Because it is open to this type of analysis on the sub-domains, 
the Stefan Problem will be used in this paper for mathematical 
analysis. 

B. Quasi-linear parabolic conservation of energy 

Another PDE that can also be used to model the 1D slice, 
in fact the actual equation used in [2], is a generalized form of 
conservation of energy. Let the function H(T) calculate the 
enthalpy—the thermodynamic internal energy—of the 
material at a temperature T, and k(T) be the 
temperature-dependent conductivity. Then conservation of 
energy for heat diffusion can be written as: 

(𝐻(𝑇(𝑥, 𝑡)))
𝑡

= (𝑘(𝑇(𝑥, 𝑡))𝑇𝑥(𝑥, 𝑡))𝑥, 𝑥 ∈ (0, 𝐿).

The boundary conditions remain the same as in (4) and (5), 
and assumption (A1) can be similarly stated to ensure the 
problem is physically realistic. 

It can be shown [4] that (8) and (1)-(2) are actually 
equivalent in a weak sense. Suppose k is constant, and H is 
defined as  

 𝐻(𝑇(𝑥, 𝑡)) = 𝜌 (𝑐𝑝 + 𝐿𝑓 ∙ 1(𝑇(𝑥, 𝑡) − 𝑇𝑓)) (9) 

where ρ and cp are the constant density and specific heat 
respectively, and 1(·) is the unit step function. Then the weak 
forms of (8)-(9) and (1)-(2) under assumption (A1) are the 
same, with constants 𝑎 = 𝑘/𝜌𝑐𝑝 and 𝑏 = 𝑘/𝜌𝐿𝑓. 

Of course, since (8) will then involve taking the derivative 
of a step function, it will not have a solution in the classical 
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sense. This makes the equation more difficult to analyze 
mathematically. However, since it does not explicitly require a 
moving boundary at s, it may be numerically modelled on a 
fixed computational domain, with (9) slightly regularized. In 
addition, (9) may be generalized to model alloys, in which 
solidification occurs over a range of temperatures rather than a 
single step. This makes it more useful for simulation, as 
discussed in the next section. 

C. Heat flux 

For the example used in this paper, the boundary condition 
(5) is often modelled as [5]: 

 𝑇𝑥(0, 𝑡) = 𝑞(𝑡) = 𝐴𝑢(𝑡)𝑐(𝑇(0, 𝑡) − 𝑇∞) 

Here, u(t) is the local spray water flux (flow rate through unit 
surface area) hitting the surface of the strand at time t, which is 
the main method of temperature control in a continuous caster. 
The term T∞  is the temperature of the spray water, which is 
easily measured. The parameters A and c are the fitting 
parameters that depend on the design of the caster and the 
cooling sprays, and in general are different in different parts of 
the caster.  

III. PREVIOUS RESULTS 

A. Continuous-in-time output feedback for the Stefan 

Problem 

In [6] and [7], two possible output injection rules are 
proposed for the Stefan problem.  Both assume the surface 
temperature can be measured throughout the caster, denote 
𝑦(𝑡) as the measured surface temperature: 

 𝑦(𝑡) = 𝑇(0, 𝑡). (11) 

Both injection rules work by introducing 𝑇̂(𝑥, 𝑡), 𝑠̂(𝑡), the 
solution to a slightly-modified version of (1)-(5). 

In [6], instead of the heat flux boundary condition (5), the 
Dirichlet boundary condition 

 𝑇̂(0, 𝑡) = 𝑦(𝑡) = 𝑇(0, 𝑡) (12) 

is used. This boundary condition simply forces the estimator 
to exactly match the measured surface temperature. This rule 
was proven to be stable, but not necessarily convergent. 
Convergence was seen in simulation, as shown in Figure 2(a). 

In [7], instead of changing the boundary condition, output 
is injected through the Stefan condition. The equation (2) is 
changed to the estimate 

 𝑠̂𝑡 = −𝑏𝑇̂𝑥|
𝑥=𝑠−

𝑥=𝑠+

+ 𝐿 (𝑇̂(0, 𝑡) − 𝑦(𝑡)). (13) 

This one is left as a conjecture and convergence or stability 
are still unproven. However, in simulation, it performs better 
than (12), showing what appears to be exponential 
convergence. An example simulation is shown in Figure 2(b). 

These approaches have the advantage of being based on a 
fundamental mathematical analysis of the problem, even with 
no explicit proof existing at present. However, they assume 
more sensing than is typically available in the actual physical 
system, and without drastic improvements in sensing 
technology they will not provide a widely implementable 
solution for the problem. 

B. Open-loop “software sensor” estimator for 

quasi-linear conservation of energy 

Within the steel industry, this problem of unreliable and 
sparse sensing has led to the widespread use of open-loop 
control for temperature in the caster. In fact, control systems in 
the industry are still open-loop in nature, albeit quite 
sophisticated: temperature “feedback” is obtained from 
real-time computational models instead of physical sensors 
[8-10]. For example, [10] uses the real-time mold cooling 
measurements in a state-of-the-art software sensor that gives 
small temperature error at the mold exit. Thus, although these 
“software sensor” models do take as inputs a wide range of 
measurements of casting conditions, the signal directly 
affected by the temperature of the strand itself in response to 
spray cooling is still unavailable to close the loop on the sprays 
through measurements taken in the spray zone. As a result, the 
estimate error, fairly small at the mold exit, grows as the 
distance from the latter increases. 

IV. DISCRETE-IN-TIME CALIBRATION 

 
(a) Estimation scheme (12) [6] 

 

   

(b) Estimation scheme (13) [7] 

 

Figure 2. Estimation error of Stefan problem estimators, 

using boundary sensing and two different estimation 

laws. 
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The purpose of this paper, then, is to start bridging the gap 
between the theoretical, but impractical approach of 
subsection III-A, and the practical but unproven approach of 
subsection III-B. The software sensors described in the 
previous section are open-loop in nature with respect to the 
spray zone. The only measurements available are not affected 
by the strand temperature - the output to be controlled through 
spray actuation. In fact, one of the problems the software 
sensor itself was specifically developed to solve is the lack of 
distributed temperature measurement in the strand. It is the 
nature of the problem that the only temperature measurements 
available, sparsely located pyrometers, are discrete-in-time 
and therefore do not lend themselves to standard estimation 
techniques. 

However, one could attempt to “calibrate” the model - 
adjust its parameters to match sparse measurements - a 
common modeling problem. In general, this calibration 
problem assumes that the system dynamics are known except 
for a finite set of unknown parameters. In the present case of 
continuous casters, the least well-known parameters are those 
related to the boundary heat flux. 

A. Calibration of the Stefan Problem 

Although the Stefan Problem is nonlinear, it is still 
parabolic in most of the strand. In addition, the unknown 
parameters in the boundary heat flux (10) all affect the heat 
flux monotonically: increasing the parameter increases the 

heat flux. Therefore, we can apply the well-known properties 
of parabolic PDEs, in particular the maximum principle, to the 
error equations. 

Lemma 1. Let T1(x,t), s1(t) and T2(x,t), s2(t) be the solutions to 
(1)-(5), with the same initial conditions 𝑇1(𝑥, 0) = 𝑇2(𝑥, 0) 
and 𝑠1(0) = 𝑠2(0)  that satisfy the initial condition 
assumption (A1), and have the same material properties a and 
b. Then, if the boundary heat fluxes satisfy  

 𝑞1(𝑡) > 𝑞2(𝑡) ∀𝑡,  

then the temperatures satisfy 

 𝑇1(𝑥, 𝑡) < 𝑇2(𝑥, 𝑡) ∀𝑡, ∀𝑥 ∈ [0, 𝑠1).  

Proof. The Proof is deleted due the page limitation and will be 
posted elsewhere. 

An immediate consequence of this Lemma is that certain 
simple calibration problems must have a unique solution. For 
example, suppose the heat flux follows (9), assuming that only 
the parameter A is unknown. Under the physical assumptions 
on the other parameters and variables in (9), increasing A 
increases the heat flux. Then, by Lemma 1, if the pour 
temperature and a measurement at any single other point in the 
caster are available, the actual value of A can be found exactly. 

Theorem 1. Let T(x,t) be the solution to the single-phase 
Stefan problem (1)-(5) under the assumption (A1) with the 

 
 

Figure 3. Human-machine interface from “software sensor” showing surface temperature and shell thickness output of 

computational model [11]. 
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boundary condition (10), where either A or c is unknown. If 
the initial condition T0(x) and a measurement T(xmeasure, 

tmeasure), xmeasure∈ [0, 𝑠1),  are known, the unknown parameter 
can be found to an arbitrary accuracy. 

Proof. Applying Lemma 1 for a given initial condition T0, 
since the heat flux (10) - and therefore the temperature 
gradient q - depends monotonically on A and c, the solution to 
the Stefan problem T will also depend monotonically on A and 
c. Therefore, there is a unique value of the unknown parameter 
that achieves a given measurement T(xmeasure, tmeasure). 
Furthermore, because of the monotonicity, it can be found, for 
example, by a simple binary search algorithm to any desired 
accuracy. □ 

B. Discussion and Simulation 

Clearly, this result provides a strong conclusion, but 
requires strict conditions. The heat flux does have a monotonic 
dependence on parameters A and c, but the parameters may 
vary throughout the caster. So, the assumption of a single 
missing parameter is not very likely.  

Extending this result to the more realistic PDE (8) is 
complicated as well. The equation is still parabolic under 
some simple realistic assumptions on the function h(T). This 
means the maximum principle still applies to the PDE itself. 
The problem is the error PDE. Unlike the Stefan problem, the 
PDE for the error derived from (8) does not have a nice 
parabolic form of its own, and so the proof of Lemma 1 does 
not apply. 

Nevertheless, the technique presented is seen below to 
provide a practical framework. Indeed, a simulation of 
(8)-(10), with working recalibration based on a single 
measurement is shown in Figure 4. Until the pyrometer is 
reached, at 6 m from the meniscus (indicated in Figure 1), the 
model assumes the value of A to be 1.57. In the actual system 
this value is 2. At 6 m from the top of the caster, a 
measurement of the surface temperature is obtained, for 
example from a pyrometer, dragging thermocouple, or 
infrared camera. A Newton search is used to adjust A to match 
the measurement. The derivative is calculated numerically 
using a simple finite-difference approximation. Within 2 
iterations, the Newton search returns a value of 1.99 for A. The 
simulation is restarted with this value, and continues for the 
rest of the caster. As seen in Figure 4 (b), the surface 
temperature and the shell thickness estimation errors are 
practically eliminated after recalibration at 6000 mm distance 
from the meniscus. 

Figure 5 shows a software sensor of the type discussed in 
subsection III-B modified to include this parameter 
recalibration. The parameters A and c in equation (10) are 
updated as pyrometer measurements are taken for the slice. 
Figure 6 shows a slice-based control law which could 
conceivably use an estimator of the type in Figure 5 instead of 
direct measurements. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper a methodology for recalibration of online 
estimator through discrete-in-time temperature measurements 
to reduce the error caused by a single unknown parameter in 
the model is proposed. It is conjectured that changing the 

assumption from 𝑇0(𝑥) = 𝑇𝑓 , 𝑥 ∈ (𝑠0, 𝐿) to  𝑇0(𝑥) > 𝑇𝑓 , 𝑥 ∈
(𝑠0, 𝐿), i.e. to the two phase Stephen problem, the result could 
apply to measurements in [𝑠1, 𝐿]. This will be examined in 
future work. 
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Figure 4. Simulation of (8)-(9) showing mid-simulation 
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Figure 5. Modified block diagram for slice software sensor using real-time parameter recalibration from pyrometer 

measurements.  
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Figure 6. Block diagram illustrating configuration in which 

estimator with recalibration is intended to be used. 
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